استفاده از لامپ ال ای دی با شدت کم برای روشن کردن آزمایشگاه سن‌یابی به‌وسیله لومیناسن

مرتبتی نهایی: دانشگاه، مهندسی زیست، مؤسسه زن‌و‌فیزیک شناسی دانشگاه تهران

سیمی و حداقلی مطلق: ناتچجوی کارشناسیان زلزله‌شناسی، مؤسسه زن‌و‌فیزیک دانشگاه تهران

تاریخ دریافت: ۱۳۹۵/۰۴/۲۲ تاریخ پذیرش: ۱۳۹۵/۰۹/۱۰

چکیده

روش لومیناسن سن‌یابی سن‌یابی با استفاده از لامپ ال ای دی در روشن‌کردن آزمایشگاه به‌وسیله‌ی لامپ ال ای دی با شدت کم مطرح می‌شود. این مطالعه برای مطالعه و بررسی این روش یا وجود معنی‌داری این روش در سن‌یابی به‌وسیله لامپ ال ای دی با شدت کم، به‌وسیله‌ی دستگاه‌ی آزمایشگاه‌ی آن ساعتی انجام شد. این دستگاه در سن‌یابی به‌وسیله لامپ ال ای دی با شدت کم می‌تواند به عنوان یک روش دقیق برای آزمایشگاه سن‌یابی به‌وسیله لامپ ال ای دی با شدت کم مورد استفاده قرار گیرد.

گلیپاره‌‌ها: ال.دی. سن‌یابی، طیف‌سنجی، لومیناسن تحریک‌شده توسط لامپ ال ای دی، سن‌یابی به‌وسیله لامپ ال ای دی

مقدمه

ازمایشگاه سن‌یابی به‌وسیله لومیناسن کاربردهای وسیعی در علم دیرینه‌شناسی دارد. شاخص‌های زیست‌شناسی، خلاق‌گری و روان‌شناسی از جمله کاربردهای آن در زلزله‌شناسی است. مطالعه و بررسی این روش در سن‌یابی به‌وسیله لامپ ال ای دی با شدت کم، به‌وسیله‌ی دستگاه‌ی آزمایشگاه‌ی آن ساعتی انجام شد. این دستگاه در سن‌یابی به‌وسیله لامپ ال ای دی با شدت کم می‌تواند به عنوان یک روش دقیق برای آزمایشگاه سن‌یابی به‌وسیله لامپ ال ای دی با شدت کم مورد استفاده قرار گیرد.

سن‌یابی به‌وسیله لومیناسن توری، آخرین زمانی را تعیین می‌کند که کروتوسک فراغتی را در معرض نور قرار داده است. این روش شامل کروتوسک سازی در اندازه‌گیری دهنده نور در مناطق مختلف ایران یافته می‌شود. همچنین این روش، تا چند صد هزار سال را تعیین می‌کند. مطالعه‌ی این روش در سن‌یابی به‌وسیله لامپ ال ای دی با شدت کم می‌تواند به عنوان یک روش دقیق برای آزمایشگاه سن‌یابی به‌وسیله لامپ ال ای دی با شدت کم مورد استفاده قرار گیرد.
احک‌کاورنری با فلدسیار داخل نمونه هنگام نمونه‌برداری، انتقال و اماده‌سازی نمونه تحت تأثیر نور قرارگیرد. سیگنال لومینسانس طبیعی آن که از زمانی انورخورده‌گی در آن جمع شده انتقال کافی می‌باشد و سن و غیراوقی نشان می‌دهد. در دوران نمونه‌برداری و انتقال می‌توان به روش‌هایی اجرا کرد که هر گرفت، اما اماده‌سازی نمونه در تاریکی مطلق می‌رسند. لذا، تغییر سطح انری با توجه به اینکه استفاده‌کننده از سیگنال‌های لومینسانس مؤسسه‌نما نورپردازی‌کننده توانایی استفاده از اول از انواع قدرت تأثیرگذار و استفاده‌کننده از این تحقیق استفاده کرده است. این تحقیق‌ها و امکانات برای این نظریه‌های استفاده شده، در این مقاله، نکته، مشخصه‌ها در نظر آمده، سپاس بر میان نشان‌دهنده این مشخصه‌ها مناسب‌ترین استفاده‌های موجود با استفاده از طیف‌سنجی اند.

عکس ۱: کاهش سیگنال TL با زمان پیا در فلدسیار و فلدسیار (داوان، ۲۰۰۸)
استفاده از لامپ الی‌دی با شدت کم برای روشی که از آزمایشگاه سن‌پایی...

شکل ۲. کاهش سیگنال لومینسانس سطح‌نشده از کوارتز تحریک‌شده با لیزر در طول موج‌های مختلف (دلار و یاتر-جنس، ۱۹۹۶)

تخرب کندزگی نور تا حد بسیار زیادی کاهش می‌یابد. با توجه به این آزمایش به‌منظور می‌رسد در مجموعه طول موج‌های بیش از ۵۴۵ نانومتر کمترین صدها را به سیگنال طبیعی لومینسانس کوارتز می‌زند. در شکل ۳ که اثر طول موج‌های مختلف برای تحریک فلز‌سپار را نشان می‌دهد ناشان مادون قرمز در ناحیه ۴۳۰ تا ۵۰۰ نانومتر قدرت تحریک بسیار بالایی دارد و نیز تابش‌های بین ۴۵۰ تا ۴۷۰ نانومتر هیچ‌گونه اثر تحریکی ندارد و با کاهش طول موج از ۴۷۰ تا ۵۰۰ نانومتر اثر تحریکی به مرویت در ۴۰ تا ۶۰ Proc افزایش می‌یابد. از سمت طول موج فلز‌سپار که کمترین صدها را به سیگنال لومینسانس کوارتز و فلز‌سپار می‌زند در محدوده بین ۴۵۰ تا ۵۰۰ نانومتر قرار دارد. این طول موج‌ها شامل نگه‌دارنده‌های فرمول‌نامه شیمیایی می‌شوند.

(ب) اسایش بصری در محیط تاریک آزمایشگاه نمی‌توان کار کرد. بنابراین، باید به‌دنبال نوری بود که بتوان با آن آزمایشگاه را به‌نهایی مطلوب روش‌تر کرد. به‌طوری که طبیعت‌های طولانی کارکردن در آن نور، چشم انسان دگر خستگی نشود و موجب

شکل ۳. یافته تحریکی لومینسانس نوری فلز‌سپارهای مختلف که با فلز‌سپارهای دیگر با مشابه آسان‌تر شده است. (a) نمودن‌های فلز‌سپارهای برداشت‌شده از سرایی‌های که در مهده تغییری می‌شود. (b) نمودن‌های فلز‌سپارهای که از رسوادیت برداشت‌شده است (بابر-جنس و هکاران، ۱۹۹۴).
افزایش بهره‌وری و اشتیاق تحقیر در محل کار باشد و نحوه روش‌نامه‌ای به‌طوری که انسحاب به صورت به‌همه‌ی مصرف شود. همچنین سنساسی به روش و درخشنده‌گی نور است. همچنین هر دو تابع درخشنده‌گی (شکل 4) تابع درخشنده‌گی محتوی حساسیت چشمه منحنی است که میانگین هزینه‌ی سرمایه‌ای نورها به طرف و از طرف موج‌های مختلف مشخص می‌کند. این داده‌ها با توجه به اینکه میانگین آمیزشگاه‌های در طول موج‌های انتقال شد، با توجه به اینکه تابع درخشنده‌گی شیبی نسبت به تابع درخشنده‌گی روئینی 50 نمونه به سمت طول موج کوتاه متقل شده است، نور قرمز نسبت به تاریکی نرخ رنگ دو می‌کند. اگر با تغییر در شدت کم کاری، نور قرمز مناسب تخمین دو طول موج‌های بین 575 تا 645 نانومتر (با بهره‌وری روئینی حدود 90 تا 95 درصد) و به‌طور عادی شیبی نسبت 70 درصد از تاریک‌کننده در تاریکی فراهم می‌کند. این نسبت به مناسب نشان می‌دهد که در طول موج‌های (375 تا 540 نانومتر) انسحاب دیتیلنی (1991) درد (شکل 4).

انتخاب لامپ مناسب

طی سال‌های گذشته با توجه به مطلوبیت انجام شده روی کوارتز و فلزیسی، بسته‌های مختلفی در مورد زمان مناسب آمیزشگاه انجام شده است که عمده‌ای در کوارتز از تاریکی در باری فلزیسی در طول موج‌های بین 580 تا 600 نانومتر استفاده شده است. برای اینکه با توجه به اقتصادی‌ی پایداری، در دو طول موج‌های کوارتز و فلزیسی استفاده شده است. برای مثال، می‌توان از سانی و زیمرون (1979)، جنس و بارباتی (1978)، اسپسو و پرسکات (1981) استفاده کرد.

146

فصلنامه کوانتور ایران، جلد 2، شماره 2، تابستان 1395

استفاده از لامپ الای دی با شدت کم برای روش کردن آزمایشگاه سن با...
شکل ۵. طیف طول موج لامپ سرخ معمولی محور افقی طول موج بر حسب نانومتر و محور قائم درصد نور اشباع دستگاه (فناحی و همکاران، ۱۹۸۷).

شکل ۷. چراغ الایدی؛ (الف) ساخته شده در ایران که درون آن برای الایدی کومک تعبیه شده است. (ب) ساخته شده در اکسفرد که درون آن هشتم الایدی کومک تعبیه شده است.

شکل ۸. طیف طول موج؛ (الف) لامپ الایدی نازنجی ساخته شده در ایران، (ب) طول موج لامپ الایدی قرمز ساخته شده در ایران، (ج) طول موج لامپ الایدی نازنجی اکسفرد (وحدانی مطلق، ۱۹۹۵).

شکل ۹. در یک را در کنار هم نشان می‌دهد. یک طول موجی سمت چپ مربوط به چراغ اکسفرد است.

همانطور که می‌بینیم، تفاوت چندانی در پیک مربوط به طول موج آین در چراغ مشاهده نمی‌شود.
شکل ۹. تفاوت پیک دو چراغ مورد مطالعه؛ پیک طول موجی که به سمت طول موج‌های کوتاه‌تر است، مربوط به چراغ تحویل‌شده در آکسفورد است و دیگری که به سمت طول موج‌های بیشتر است، مربوط به چراغ تبهیج‌شده در ایران است (وحدات مطلق، ۱۹۸۵).

ولی مسئلة مهم‌تر مربوط به درصد نور سبزی است که هر کدام از این چراغ‌ها داراست و در شکل مربوط به هر یک از آن‌ها نیز مشاهد است. چراغ مربوط به ایران دارای ۳۱٪ نور سبز و چراغ آکسفورد دارای ۳۵٪ نور سبز است. یک کاهش اثر نور سبز می‌توان با استفاده از دیمر ۱/۵ شدت نور را کاهش داد و به مزایای سریالی و شرایط که مورد قبول است و به نورتابی نمونه اسپیسی وارد نمی‌گردد. نه این معنا که با تعیین دیمر روز چراغ مورد استفاده، در واقع شدت نور وروما را کم یا زیاد می‌کند و هر زمان که نیاز به شدت بالایی نور باشد، دیمر را متاناسب با شدت مورد نیاز تنظیم می‌کنیم و در سایر موارد دیمر روز حداقی قرار می‌گیرد.

به‌منظور حذف اثر نور سبز که برای نمونه‌ها مضر است، می‌توان از فیلتر نوری استفاده کرد. به‌دست نیوپن فیلتر نوری مناسب در ایران از طبق (عفاد) مورد استفاده در بای عادی استفاده شد، برای مقایسه، ترکیب لامپ قرمز و طلق‌های نیز بررسی شد (شکل ۱۰).
فهرست هدف‌گذاری‌های آزمایشگاه در آزمایشگاه سین به‌دوره لومینسانس داشته‌ایم، با استفاده از الی‌دی، چراغ‌هایی به شکل مستطیلی به طول حدود ۱ متر و عرض حدود ۲۰ سانتی‌متر ساخته و در سقف نصب شده است. (مشابه شکل ۷ اما با تعداد بیشتر ال‌ای‌دی) در بررسی اثر آزمایشگاه لومینسانس داشته‌ایم. اکسسوریهای ایکس‌گال فلدسپار، از فلزاتریاها، روی سیگنال SK1A خوش‌رفتار (میکرونی) که از ایران برداشت شده بود استفاده شد. یک لاپ‌یه از چراغ‌های SK1A (۱۵۰–۹۰) روی دیسک‌های ال‌ومینی به قطر ۵ میلی‌متر با استفاده از سیرسی سیگنال مخصوص شد که همانند چسب عمل می‌کند و به آن ال‌ای‌دی ۱ میگدین.

شکل ۱۱. فضای رنگ ای سی‌ای‌دی ۱۹۳۱، ۱۹۳۴ این فضای رنگ را در سال ۱۹۳۱ کیپسیمن سن مغلب برنه مایر ایجاد کرد. (http://www.eef2.com/Lab/Graphics/Colors/Chromaticity.htm) فضای رنگ ای سی‌ای‌دی در سبک‌های محوطه‌ای شکل Z، Y و X هر نقطه روی آن ۱ است. رنگ‌های حاشیه‌ای به طرف پایین است. (کدهای است) است که در سه بعد هندسی مجموعه X، Y و Z از ۱ تا ۱۰۰ هر نقطه روی آن است. رنگ‌های حاشیه‌ای به طرف پایین است.
استفاده از لامپ آلاینده شدته کم برای روش کردن آراپیشگاه سینابی ...
شدت قرارگرفت و سیگنال کاهشی لومینانس آن انداره‌گیری شد (T5,T6,T7,T8; R5,R6,R7,R8; T5,T6,T7,T8).

5. تکرار مراحل 1 و 2.
6. دیسک نگهدارنده 84 الیکویسیون سه الیکویسیون میز کار به مدت 24 ساعت قرارگرفت و شدت نور گریهای اتان را به مدت حداقل 80 در این حال میزان متوسط نور تابش شده به دیسک نگهدارنده کمک تر از 10 لوسک کم و بود (شکل 13).
7. مراحل 4 تکرار شد.
8. مراحل 1 و 3 تکرار شد.
9. دیسک نگهدارنده 84 الیکویسیون سه الیکویسیون میز کار قرارگرفت و شدت نور گریهای اتان را به مدت 24 ساعت حداکثر تنظیم شد. در این حال میزان متوسط نور تابش شده به دیسک نگهدارنده 1/2 لوسک بود.
10. مراحل 4 تکرار شد.
11. مراحل 1 و 2 تکرار شد.
12. دیسک نگهدارنده 84 الیکویسیون سه الیکویسیون میز کار قرارگرفت و در فاصله 1 متری از گریه قبل حمل الیکویسیون روز میز کار قرارگرفت و شدت نور گریهای اتان را به مدت حداکثر تنظیم شد. در این حال میزان متوسط نور تابش شده به دیسک نگهدارنده 1/2 لوسک بود (شکل 13).

یافته‌های پژوهش

بدهبالی تقسیم هر R بر T. تصحیح حساسیت انجام شد. نسبت R بر T در هر حالت با سایر نسبت‌های R بر T ممکن است. (شکل 13)
بحث و نتیجه‌گیری

برای انتخاب نور مناسب، با مطالعه مقالات منتشرشده به این ترتیب رشته‌ای که هر آزمایشگاه در هر دوران با توجه به فناوری در دسترس باید انجام آزمایش‌هایی را بررسی و لامب مناسب را در آزمایشگاه خود نصب کرده است. لذا، نخست، نورهایی که برای نمونه شناسایی شد نورهایی که انتخاب برای چند و ده‌ها ضر را برای نمونه دارد. در ناحیه طول موج 530 - 540 نانومتر قرار می‌گیرد. لذا، لامب الای دیهای خارجی و قرار مطمئنی از هر نور، لامب الای دیهای تامین شده در طول موج 533 نانومتر به‌عنوان ناشنو طول موج خاصی به شدت حادکر گزارش 20% از سیگنال لومنسانس قفل‌سیر پای می‌شود.

![Oxford light](https://iranqua.ir)

شکل 1.14: میزان نمایشگاه لومنسانس قفل‌سیر است. مرحله‌های 1.2.3 و 4 و 6 و 7 و 8 تکرار شده است در R/Tx. میزان نمایشگاه لومنسانس قفل‌سیر است. مرحله‌های 1.2.3 و 4 و 6 و 7 و 8 تکرار شده است در R/Tx.
صفحه کوانتوری ایران، دوره 2، شماره 2، تابستان 1395

طیف‌های سطع‌شده از ال‌آی‌دی‌های نارنجی خردداری‌شده از ایران تقریباً مشابه طیف سطع‌شده از چراغ ال‌آی‌دی نارنجی‌ساخته‌شده در آکسیور. بود. این شاهد پیشنهاد می‌کند که می‌توان از ال‌آی‌دی‌های نارنجی موجود در ایران استفاده و نور مناسب آزمایشگاه سیبی به‌روش لومینسانس را تامین کرد.

برای کاهش انرور نور و استفاده از این چراغ‌ها با شدت بالا، نیاز به بیلبر مناسب نارنجی است. استفاده از طبقه به‌چالن، میزان نور سیبی چراغ نارنجی را کاهش داد. لذا می‌توان به ترتیب لامپ ال‌آی‌دی نارنجی ساخت ایران (۱۹۴۰-۱۹۴۵) و طبقه نارنجی، آزمایشگاه را با چراغ نارنجی به شدت متوسط روش کرده‌ام. اما، به‌نظر برسی دقیق‌تر، ضروری است این چراغ در آزمایشگاه لومینسانس روزی مؤسسه‌زونیت‌پزیک نصب و آن بر کاهش سیگنال لومینسانس کوارتر و فلدسیار در شدت‌های مختلف بررسی تا شدت اینیمیوم تغییر شود.

سپاسگزاری

از آقای سلیمان محسنی و خانم مروارید جلالی جوان در دانشکده برق و علوم کامپیوتر پردیس فنی دانشگاه تهران برای همکاری پیوسته به نویسندگان در طیف‌سنجی چراغ‌های سپاسگزاری می‌نماییم. همچنین از سرکار خانم جلالی جوان گرام‌فرآهم کردن شکل ۱۰ تشکل می‌کنیم. بدون کمک آزمایشگاه سیبی به‌روش لومینسانس دانشگاه آکسیور این تحقیق به‌صورت مطلوب نمی‌رسید.

منابع

